latex, math and emacs
n choose k
\({n \choose k} = _{n}^{k}\textrm{C}= \frac{n!}{k!(n-k)!}\)
https://byjus.com/n-choose-k-formula/
\((x+y)^n = \sum_{k=0}^n %{n \choose k} x^{n - k} y^k\)
\begin{equation} \label{eq:1} C = W\log_{2} (1+\mathrm{SNR}) \end{equation}
binomial theorem
In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial.
\((a+b)^n=\sum_{k=0}^n{n\choose k}a^{n-k}b^k\)
Thanks for reading!
If this article appears incomplete, it may be intentional. Try prompting for a continuation.
If this article appears incomplete, it may be intentional. Try prompting for a continuation.